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Coarsening in the 1D Ising model evolving with
Swendsen–Wang dynamics: an unusual scaling
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‡ Service de Physique Théorique, CE Saclay, F91191 Gif sur Yvette, France

Received 10 September 1996

Abstract. We consider a simple model of domain growth: the zero-temperature 1D Ising
model evolving according to the Swendsen–Wang dynamics. We find that in the long-time
limit, the pair correlation function scales with a characteristic length increasing as the square of
the average domain size. In that limit, a few large domains occupy almost all the space with
many small domains between them. In contrast to the usual picture of coarsening, the average
domain size here is not a characteristic length of the growth problem. Instead, one finds a
power-law distribution for the sizes of large domains with a cut-off at a length which grows as
the square of the average size of the domains.

Coarsening phenomena in two-phase systems, like Ising models below their ordering
temperature, have attracted a lot of interest in the last decades [1, 2]. The usual picture is
that, in the long-time limit, there is a scaling regime with a single characteristic length, the
average sizeλ of the domains (usually, this average size grows as a power law with time
λ ∼ tα). However, a two-length scaling has been found in some systems [3, 4].

The goal of the present work is to describe a simple example of coarsening in a two-
phase system which also exhibits an unusual scaling with a characteristic length3 much
larger than the average domain sizeλ and a power-law distribution for the size of large
domains with a cut-off at3.

The system we consider is the zero-temperature Ising chain evolving according to a
Swendsen–Wang-like dynamics [5, 6]: during every infinitesimal time interval1t , each
spin has a probability1t of being updated and updating a spin means that the whole
cluster containing this spin is flipped. In other words, each domainI (of length l(I )) has
a probability1t l(I ) of flipping during the infinitesimal time interval1t . (The flipping
interval I means that three intervals, itself and its right and left neighbours,I1 andI2, are
replaced by a single interval of lengthl(I ) + l(I1) + l(I2)).

Clearly, during each time interval1t , the total numberN(t) of domains (which is also
the number of frustrated bonds) decreases (on average) by 2L1t (whereL is the total length
of the system), so that as long asN(t) is very large, its expression is given by

N(t) = N(0) − 2Lt

If at time t = 0, there is a densityρ0 = N(0)/L of domains, the density at timet
becomes

ρ = ρ0 − 2t
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and the whole system is reduced to a single domain whent → ρ0/2. The average domain
sizeλ which is

λ = L

N(t)
= 1

ρ0 − 2t

diverges ast → ρ0/2. We are interested in the regime where the average domain sizeλ

becomes very large, but is still much smaller than the system sizeL in order to have a
large number of domains in the system and to avoid the late stage of the growth where
some domains become comparable in size to the total system sizeL (this late stage regime
would be dominated by fluctuations as the sizes of the largest domains in this regime would
fluctuate from sample to sample). Mathematically, this means that here we want to take the
limit L → ∞ first and then the limitt → ρ0/2. For simplicity in what follows, we will
mostly consider two cases for the initial condition: randomly oriented spins (case I) and an
antiferromagnetic initial condition (case II).

The reason which makes possible the calculation of the distribution of domain sizes is
that one can write an exact evolution equation for this distribution. If one definesNi(t) the
number of intervals of lengthi, the evolution of the total number of intervalsN(t)

N(t) =
∑

i

Ni(t)

and of theNi(t) is given by

N(t + 1t) = N(t) − 2L1t

Ni(t + 1t) = Ni(t) + 1t

[
−iNi(t) − 2L

Ni(t)

N(t)
+

∑
j

∑
k

jNj (t)
Nk(t)

N(t)

Ni−j−k(t)

N(t)

]
.

(1)

Equation (1), whicha priori looks like a mean-field equation is in fact exact for the
following two reasons. First, because if initially the lengths of the intervals along the line
are not correlated (as in cases I and II), they remain uncorrelated at any later time. This is
because whenever an interval is updated, it merges with its two nearest neighbours but does
not acquire any correlation with its remaining neighbours and so the process preserves the
absence of correlations [7]. The second reason which makes (1) valid is that we consider a
system in the limitL → ∞. Therefore all theNi(t) are self-averaging quantities.

Clearly the process keeps the total lengthL constant:

L =
∑

i

iNi(t)

As L → ∞, it is more convenient to work with the densities

ρ(t) = N(t)

L
ρi(t) = Ni(t)

L

(for randomly oriented spins (case I)ρ(0) ≡ ρ0 = 1
2 and ρi(0) = 2−i−1, whereas for

an antiferromagnetic initial condition (case II)ρ(0) ≡ ρ0 = 1 andρi(0) = δi,1). These
densities evolve according to (1):

dρi(t)

dt
= −iρi(t) − 2

ρi(t)

ρ(t)
+

∑
j

∑
k

jρj (t) ρk(t) ρi−j−k(t)

ρ2(t)
(2)

and as

dρ(t)

dt
= −2 (3)
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one can consider theρi(t) as functions ofρ(t) and rewrite (2) as

2
dρi

dρ
= iρi + 2

ρi

ρ
−

∑
j

∑
k

jρj ρk ρi−j−k

ρ2
. (4)

Equation (4) is valid whenL → ∞, and the long-time regime we want to consider is the
limit of large domains (ρ → 0). It has the form of a Smoluchowski equation [8] in a case
where gelation occurs at a finite time (= ρ0/2).

By multiplying (4) by in and by summing overn it is easy to generate evolution
equations for the momentsσn defined by

σn =
∑

i

ρi in.

In addition to the known fact that

σ0 = ρ and σ1 = 1

this gives the following evolution equations:

dσ2

dρ
= −2σ2

ρ
− 1

ρ2

dσ3

dρ
= −3σ3

ρ
− 3σ 2

2

ρ
− 6σ2

ρ2

dσ4

dρ
= −4σ4

ρ
− 10σ2σ3

ρ
− 10σ3

ρ2
− 15σ 2

2

ρ2

and so on. The evolution equation ofσn involves onlyσn itself or lower moments, and so
in principle the whole hierarchy can be solved:

σ2 = B

ρ2
− 1

ρ

σ3 = 3B2

ρ4
+ C

ρ3
+ 3

ρ2

σ4 = 15B3

ρ6
+ 10BC + 15B2

ρ5
+ D

ρ4
− 15

ρ3

(5)

etc, where the integration constantsB, C, D, . . . depend only on the initial condition. The
above expressions of the first moments indicate that forn > 1 andρ → 0

σn ∼
(

B

ρ2

)n−1

meaning that the intervals which contribute mostly to the moments have a length of order
ρ−2 whereas the average size of the domains is of orderρ−1.

An easy way of obtaining all the momentsσn is to consider the generating function

g(s) =
∑

i

esi ρi =
∑

n

sn

n!
σn (6)

From (4), one can easily derive the evolution equation ofg(s):

∂g

∂ρ
= 1

2

∂g

∂s
+ g

ρ
− g2

2ρ2

∂g

∂s
(7)
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and so given an initial distribution of domain sizes and its generating functiong0(s), one
can followg(s) asρ → 0 by integrating (7). For example, if initially the spins are random
(case I), one hasρi = 2−i−1 and this impliesρ = 1

2 andg0(s) = es/(2 − es) for the initial
condition, whereas if the initial configuration is antiferromagnetic (case II),ρi = δi,1 and
g0(s) = es for ρ = 1.

In principle (7) can be solved exactly by the method of characteristics. It is convenient
to introduce the functionh such thatg(s) = ρh(s), as neitherρ nor s appear explicitly in
the equation thath satisfies:

∂h

∂ρ
= 1

2

∂h

∂s
− h2

2

∂h

∂s
.

For example, in case I, one can show thath(s) is solution of

2s + (1 − h2)

(
ρ − 1

2

)
− 2 log

2h

h + 1
= 0 (8)

whereas in case II, it is given by the solution of

2s + (1 − h2)(ρ − 1) − 2 logh = 0. (9)

More generally, if in the initial condition the density isρ0 and the functionh is h0(s), the
solutionh(s) is given implicitly in terms ofs andρ by the solution of

h0
(
s + 1

2(1 − h2)(ρ − ρ0)
) = h. (10)

The solution is in general complicated enough to make the explicit expression of theρi

difficult to obtain in the limitρ → 0.
As for ρ → 0 one expects from (5) that all integer momentsσn ∼ (B/ρ2)n−1 (except

σ0 = ρ), the generating functiong(s) should satisfy the following scaling:

g(s) − ρ ' ρ2

B
G

(
Bs

ρ2

)
(11)

where according to (5),G(0) = 0, G′(0) = 1, G′′(0) = 1, G(3)(0) = 3 andG(4)(0) = 15. If
one tries to find a solution of the form (11), one obtains the requirement thatG(x) should
satisfy the following equation:

G − 2xG′ + GG′ = − ρ

2B
G2G′ − ρ

∂G

∂ρ
(12)

wherex = Bs/ρ2. In the long-time limit,ρ → 0 and one finds that the following expression
for G(x):

G(x) = 1 − √
1 − 2x (13)

becomes a solution of (12) satisfyingG′(0) = 1.
The constantB can be obtained from the initial conditionB = σ2ρ

2 +ρ. For randomly
oriented spins in the initial condition (case I), one hasρ = 1

2 and σ2 = 3 so thatB = 5
4.

For an antiferromagnetic initial configuration (case II),ρ = 1, σ2 = 1 andB = 2. This
agrees with (8)–(10) when one looks for a solutiong(s) = ρh(s) in the limit ρ → 0 and
s ∼ ρ2 and one uses the fact thath0(s) = 1 + s/ρ0 + (B − ρ0)s

2/2ρ3
0 + O(s3) as (10)

becomess − ρ(h − 1) + B(h − 1)2/2 = 0. The solution of this quadratic equation recovers
(11) and (13).

From (11), (13), one can see that for alln > 1

σn ' 0(n − 1
2)√

π

(
2B

ρ2

)n−1
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and if one defines a length3 by

3 = 2B/ρ2

for i ∼ 3 one has

ρi ' 1√
π

1

31/2

1

i3/2
e−i/3 (14)

It is interesting to note that the long-time behaviour of all the integer moments is
determined by the knowledge ofρ and σ2 in the initial condition, i.e. by the first two
moments of the initial distribution of the lengths of the intervals.

Expression (14) does not hold down toi ∼ 1. For i ∼ 1, theρi have more complicated
expressions than (14) and all the details of the initial distribution of domain sizes become
important, even in the limitρ → 0. For example, if the initial spin configuration is random
(case I) one can calculate easily theρ-dependence of the firstρi from (4), and one finds

ρ1 = 1
2ρe(2ρ−1)/4 ρ2 = 1

4ρe(2ρ−1)/2 ρ3 = 1
32(5ρ − 2ρ2)e(6ρ−3)/4

whereas for an initial antiferromagnetic configuration (case II), one finds

ρ1 = ρe(ρ−1)/2 ρ2 = 0 ρ3 = 1
2(ρ − ρ2)e(3ρ−3)/2.

These two examples show that asρ → 0, a finite fraction of domains are domains
of length 1 (withρ1 ' ρe−1/4/2 in case I andρ1 ' ρe−1/2 in case II). Clearly the spins
belonging to these domains of length 1 are spins which never flipped under the dynamics.
So the picture is that in the limitρ → 0, almost all the line is occupied by large domains
of size of order3 ∼ ρ−2 whereas almost all domains are small of size of order 1. Between
two consecutive large domains, there are an infinite number of small domains.

This picture can be confirmed by calculating the pair correlation function〈S0SR〉 between
two spins at positions 0 andR. Because the sizes of successive domains are uncorrelated
it is possible to relate the distribution of domain sizes and the correlation function [9, 10].
This relation is easier to write for the Laplace transforms. If

F(s) =
∑
R>0

esR〈S0SR〉

one can show in a very similar way to [9, 10] that

F(s) = 2ρ
es

(es − 1)2

g(s) − ρ

g(s) + ρ
− 1

es − 1

which, using (11), in the limitρ → 0 ands ∼ ρ2 becomes

F(s) ∼ 1

s

[
ρ2

Bs
G

(
Bs

ρ2

)
− 1

]
. (15)

It is easy to check that the same expression would be obtained in this limit (ρ → 0, s ∼ ρ2)
if 〈S0SR〉 was given only by the contribution of the pairs belonging to the same domain, i.e.

〈S0SR〉approx '
∑
i>R

(i − R)ρi

as this would give

Fapprox(s) = es

(es − 1)2
(g(s) − ρ) − 1

es − 1

which becomes identical to (15) whenρ → 0 ands ∼ ρ2. This is because between two
large domains, there are always so many small domains that the contributions of an even
or an odd number of these small domains almost cancel.
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From (14) it follows that whenρ → 0, 〈S0SR〉 becomes a function of the ratiox = R/3:

〈S0SR〉 '
∑
i>R

1√
π

1

31/2

i − R

i3/2
e−i/3 '

∫ ∞

x

dy√
π

y − x

y3/2
e−y.

Note that forx → 0, 〈S0SR〉 ' 1 − 4x1/2/
√

π . The limit 1 asx → 0 means that domains
described by (14), i.e. of size∼ 3, occupy almost all the space (as two spins at a distance
small compared with3 are likely to be parallel). The fact that the correction isx1/2 means
that between two such large domains, there are infinitly many small domains in contrast to
normal cases [2], where the first correction is linear inx.

Another quantity one can consider is the fractionr of persistent spins [7, 11] (the spins
which never flip up to timet). As all the spins belonging to domains of length 1 have never
flipped, one hasr > ρ1 ∼ ρ. One does not expect a large contribution from large domains
as most of the spins of large domains have flipped many times. We did a simulation which
confirmed thatr ∼ ρ whenρ → 0. This, in fact, can be shown analytically but we omit
the details here, because the calculation of the limiting value of the ratior/ρ asρ → 0 is
rather complicated.

The calculations done above in the Ising case can be easily generalized to the Potts
model. For Potts spins, each domain carries one ofq colours and each time a domain
is updated, all the spins of this domain adopt the colour of one of the two neighbouring
domains (chosen at random). Therefore, if initially the spins are randomly chosen, when a
domain is updated, it merges with its two neighbours with probability 1/(q − 1), with its
left neighbour only with probability(q −2)/(2q −2) and with its right neighbour only with
probability (q − 2)/(2q − 2). This means that for generalq and if the initial condition is
random (dρ/dt = −q/(q − 1)), the mean-field-like equation (4) becomes

dρi

dρ
= q − 1

q
iρi + ρi

ρ
− q − 2

q

∑
j

jρj ρi−j

ρ
− 1

q

∑
j

∑
k

jρj ρk ρi−j−k

ρ2
(16)

In contrast to other dynamical rules [7], this equation is still exact for arbitraryq, as the
dynamics preserve the absence of correlation between the lengths of the domains. Asρ → 0
the solution takes also the scaling form (11) except that

σ2 = B/ρ2 − 2/qρ

with B = (q + 3)(q − 1)/q2 (as ρ0 = (q − 1)/q and σ2 = (q + 1)/(q − 1) for random
initial conditions). So up to a change of the constantB, the picture in the Potts case is the
same as in the Ising case.
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